Logotipo do Site Inovação Tecnológica





Espaço

Confirmado: Buracos negros giram

Redação do Site Inovação Tecnológica - 28/09/2023

Confirmado: Buracos negros giram sobre si mesmos
Representação esquemática do modelo de disco de acreção inclinado. Supõe-se que o eixo de rotação do buraco negro esteja reto para cima e para baixo nesta ilustração. A direção do jato aponta quase perpendicular ao plano do disco. O desalinhamento entre o eixo de rotação do buraco negro e o eixo de rotação do disco desencadeia a precessão do disco e do jato.
[Imagem: Yuzhu Cui et al. (2023)/Intouchable Lab@Openverse/Zhejiang Lab]

Rotação do buraco negro

O buraco negro supermassivo no coração da galáxia M87, que ficou famoso ao posar para a primeira imagem de um buraco negro, rendeu outra novidade: Acaba de ser confirmado que o jato que sai desse buraco negro oscila, fornecendo uma prova direta de que o buraco negro apresenta rotação sobre seu próprio eixo.

Buracos negros supermassivos, monstros até bilhões de vezes mais pesados que o Sol, são difíceis de estudar porque nenhuma informação consegue escapar de dentro deles. Teoricamente, existem muito poucas propriedades que podemos esperar medir. Uma propriedade que possivelmente poderia ser observada é a rotação, mas, devido às dificuldades técnicas para isso, até hoje ninguém havia conseguido fazer observações diretas do giro de um buraco negro.

Para superar essas dificuldades, uma equipe internacional analisou mais de duas décadas de dados observacionais da galáxia M87. Esta galáxia, localizada a 55 milhões de anos-luz de distância, na direção da constelação da Virgem, abriga um buraco negro 6,5 bilhões de vezes mais massivo do que o Sol e 2.000 vezes mais pesado do que o buraco negro Sagitário A*, no centro da Via Láctea. No total, mais de 20 radiotelescópios em todo o mundo contribuíram para juntar todos esses dados.

Já sabíamos que o buraco negro M87 tem um disco de acreção (ou disco de acréscimo), que alimenta o buraco negro com matéria, e um jato, no qual a matéria é ejetada dos "pólos" do buraco negro a uma velocidade próxima da velocidade da luz.

O mecanismo de transferência de energia entre buracos negros e seus discos de acreção e seus jatos relativísticos tem intrigado físicos e astrônomos há mais de um século. A teoria predominante sugere que a energia pode ser drenada de um buraco negro em rotação, permitindo que algum material que o rodeia seja ejetado com grande energia. No entanto, a rotação dos buracos negros supermassivos, um fator crucial nesse processo e o parâmetro mais fundamental além da massa do buraco negro, não tinha sido observada diretamente até agora.

Confirmado: Buracos negros giram sobre si mesmos
O estudo liga a dinâmica do jato com o buraco negro supermassivo central, oferecendo evidências de que o buraco negro de M87 gira.
[Imagem: Yuzhu Cui et al. - 10.1038/s41586-023-06479-6]

Precessão do buraco negro

Os novos resultados mostram que as interações gravitacionais entre o disco de acreção e a rotação do buraco negro fazem com que a base do jato oscile, ou precesse, da mesma forma que as interações gravitacionais dentro do Sistema Solar fazem com que a Terra apresente o fenômeno da precessão, a ligeira oscilação do planeta em torno do seu próprio eixo conforme ele gira sobre si mesmo.

A direção do jato do buraco negro muda cerca de 10 graus, com um período de precessão de 11 anos, correspondendo às simulações teóricas rodadas em supercomputadores, fornecendo evidências diretas de que o buraco negro de fato gira.

"Estamos entusiasmados com esta descoberta significativa," disse Yuzhu Cui, do Observatório Astronômico Nacional do Japão. "Como o desalinhamento entre o buraco negro e o disco é relativamente pequeno e o período de precessão é de cerca de 11 anos, o acúmulo de dados de alta resolução que rastreiam a estrutura M87 ao longo de duas décadas e uma análise minuciosa foram essenciais para obter esta conquista."

Bibliografia:

Artigo: Precessing jet nozzle connecting to a spinning black hole in M87
Autores: Yuzhu Cui, Kazuhiro Hada, Tomohisa Kawashima, Motoki Kino, Weikang Lin, Yosuke Mizuno, Hyunwook Ro, Mareki Honma, Kunwoo Yi, Jintao Yu, Jongho Park, Wu Jiang, Zhiqiang Shen, Evgeniya Kravchenko, Juan-Carlos Algaba, Xiaopeng Cheng, Ilje Cho, Gabriele Giovannini, Marcello Giroletti, Taehyun Jung, Ru-Sen Lu, Kotaro Niinuma, Junghwan Oh, Ken Ohsuga, Satoko Sawada-Satoh, Bong Won Sohn, Hiroyuki R. Takahashi, Mieko Takamura, Fumie Tazaki, Sascha Trippe, Kiyoaki Wajima, Kazunori Akiyama, Tao An, Keiichi Asada, Salvatore Buttaccio, Do-Young Byun, Lang Cui, Yoshiaki Hagiwara, Tomoya Hirota, Jeffrey Hodgson, Noriyuki Kawaguchi, Jae-Young Kim, Sang-Sung Lee, Jee Won Lee, Jeong Ae Lee, Giuseppe Maccaferri, Andrea Melis, Alexey Melnikov, Carlo Migoni, Se-Jin Oh, Koichiro Sugiyama, Xuezheng Wang, Yingkang Zhang, Zhong Chen, Ju-Yeon Hwang, Dong-Kyu Jung, Hyo-Ryoung Kim, Jeong-Sook Kim, Hideyuki Kobayashi, Bin Li, Guanghui Li, Xiaofei Li, Zhiyong Liu, Qinghui Liu, Xiang Liu, Chung-Sik Oh, Tomoaki Oyama, Duk-Gyoo Roh, Jinqing Wang, Na Wang, Shiqiang Wang, Bo Xia, Hao Yan, Jae-Hwan Yeom, Yoshinori Yonekura, Jianping Yuan, Hua Zhang, Rongbing Zhao, Weiye Zhong
Revista: Nature
Vol.: 621, pages 711-715
DOI: 10.1038/s41586-023-06479-6
Seguir Site Inovação Tecnológica no Google Notícias





Outras notícias sobre:
  • Corpos Celestes
  • Universo e Cosmologia
  • Telescópios
  • Exploração Espacial

Mais tópicos