Logotipo do Site Inovação Tecnológica





Informática

Holografia é produzida com elétrons

Baseado em artigo de Christine Vollgraf - 27/12/2010

Holografia é produzida com elétrons
O experimento com a holografia de elétrons é promissor para o desenvolvimento de novas ferramentas para o estudo de átomos e moléculas durante suas interações e em reações químicas.
[Imagem: Huismans et al]

Laser e elétrons

O princípio da holografia foi descoberto em 1947 pelo cientista húngaro Dennis Gábor, quando ele tentava melhorar a resolução dos microscópios eletrônicos - microscópios cujo funcionamento depende dos elétrons.

A primeira realização experimental do conceito de holografia só foi feita em meados dos anos 1960 - mas a demonstração não usava elétrons, e sim uma nova fonte de luz que acabava de ser descoberta: o raio laser.

Agora, físicos do Instituto Max Born, em Berlim, voltaram às origens e estão demonstrando que os elétrons podem de fato ser usados para gerar imagens holográficas.

Não por coincidência, um elemento essencial na nova abordagem é que os elétrons que produzem a imagem do objeto são gerados a partir do próprio objeto - usando um laser de alta potência.

Luz coerente

A holografia prática utiliza luz coerente, isto é, uma fonte de luz onde todas as ondas de luz emitidas marcham de forma coordenada.

Esta onda de luz é dividida em duas partes, uma onda de referência e uma onda objeto. A onda de referência incide diretamente sobre um detector bidimensional, por exemplo, uma chapa fotográfica. A onda objeto interage com o objeto, é refletida, e a seguir também é detectada.

A superposição das duas ondas no detector cria padrões de interferência - é nesses padrões de interferência que a forma do objeto é codificada.

O que Gábor não conseguiu fazer foi construir uma fonte coerente de elétrons. Mas isso é algo comum atualmente nos laboratórios que realizam experimentos com campos de laser de alta intensidade.

Com pulsos intensos e ultra-curtos de laser, pode-se facilmente extrair elétrons coerentes a partir de átomos e moléculas.

Esses elétrons são a base para o novo experimento de holografia à base de elétrons, que foi realizado usando átomos de xenônio (Xe).

Experiência holográfica

"Em nosso experimento, o forte campo de laser arranca elétrons dos átomos de Xe, primeiro os acelera e depois os fazer retornar. É como se alguém pegasse uma catapulta e disparasse um elétron no íon que foi deixado para trás. O laser cria a fonte de elétrons perfeita para uma experiência holográfica," explica Marc Vrakking, um dos autores do estudo.

Alguns dos elétrons se recombinam com o íon, produzindo luz na faixa do ultravioleta extremo (XUV), produzindo pulsos com duração na faixa dos attossegundos.

A maioria dos elétrons passa pelo íon, formando a onda de referência do experimento holográfico.

Alguns dos elétrons, por sua vez, refletem-se no íon, formando a onda objeto.

Usando um detector bidimensional, os cientistas puderam observar os padrões de interferência holográfica gerados pela interação da onda objeto com o potencial de Coulomb do íon.

Informação nos hologramas

O processo de ionização produz elétrons em um intervalo de tempo finito, de apenas alguns femtossegundos.

Segundo os cálculos teóricos da equipe, a dependência do tempo do processo de ionização é codificado no holograma, assim como eventuais alterações do íon entre o momento em que a ionização ocorre e o momento que a onda objeto interage com o íon.

Vrakking explica que é justamente isto que torna o experimento tão promissor para uso futuro:

"No momento, nós demonstramos que os hologramas podem ser produzidos em experimentos com lasers intensos. No futuro, nós teremos que aprender como extrair toda a informação que está contida nos hologramas. Isso poderá criar novos métodos para estudar a dinâmica dos elétrons em uma escala de tempo de attossegundos, bem como novos métodos de estudo das mudanças estruturais, dependentes do tempo, em moléculas," prevê o pesquisador.

Bibliografia:

Artigo: Time-Resolved Holography with Photoelectrons
Autores: Y. Huismans, A. Rouzée, A. Gijsbertsen, J.H. Jungmann, A. S. Smolkowska, P. S. W. M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko, J. M. Bakker, G. Berden, B. Redlich, A.F.G. van der Meer, H. G. Muller, W. Vermin, K.J. Schafer, M. Spanner, M. Yu. Ivanov, O. Smirnova, D. Bauer, S. V. Popruzhenko, M. J. J. Vrakking
Revista: Science
Data: December 2010
Vol.: Published Online
DOI: 10.1126/science.1198450
Seguir Site Inovação Tecnológica no Google Notícias





Outras notícias sobre:
  • Holografia
  • Raios Laser
  • Fotônica
  • Imagens 3-D

Mais tópicos