Espaço

Relógio nuclear: 10 vezes mais preciso que relógio atômico

Relógio nuclear
O núcleo de um isômero do elemento tório é único que se conhece que pode se tornar a base de um relógio nuclear. [Imagem: Christoph Düllmann]

Relógio atômico e relógio nuclear

Parecia improvável que alguém pudesse reclamar da precisão dos relógios atômicos, nossos cronômetros mais precisos. O recordista atual atrasaria no máximo um segundo em 20 bilhões de anos - o que é bastante se comparado com os 13,7 bilhões de anos que os cientistas calculam como sendo a idade do Universo.

Pois não apenas é desejável superar essa precisão para inúmeras aplicações práticas, como também agora é possível fazer isso.

Mas o que pode superar a precisão dos relógios atômicos?

Os relógios nucleares que, em vez de se basearem no átomo inteiro, usarão apenas seu núcleo, que é 100 mil vezes menor e, portanto, está muito menos sujeito a interferências externas.

Núcleo atômico único

Os físicos sonham com os relógios nucleares há muito tempo, mas só agora Lars von der Wense e seus colegas da Universidade Ludwig-Maximilians de Munique, na Alemanha, conseguiram demonstrar experimentalmente um estado de energização há muito tempo procurado - um isômero nuclear em um isótopo do elemento tório (Th).

Embora sejam conhecidos mais de 3.300 tipos de núcleos atômicos, apenas o núcleo do isótopo de tório com massa atômica 229 (Th-229m) oferece uma base adequada para um relógio nuclear. Ele é o único a apresentar um estado de excitação - ganho de energia - que fica apenas ligeiramente acima do seu estado fundamental.

Como ele não ocorre naturalmente, há 40 anos os físicos tentavam produzi-lo em laboratório para ver se a teoria está correta.

"Espera-se que o Th-229m apresente uma meia-vida muito longa, entre minutos e várias horas. Assim, deve ser possível medir com precisão extremamente alta a frequência da radiação emitida quando o estado nuclear excitado cair de volta para o estado fundamental," explica o professor Peter Thirolf.

Relógio nuclear será 10 vezes mais preciso que relógio atômico
O experimento tour de force exigiu o desenvolvimento de um complexo sistema sensor para capturar e medir o núcleo atômico de tório. [Imagem: Lars von der Wense/LMU Munich]

Meia-vida

A possibilidade de construir um relógio nuclear tornou-se realidade quando a equipe conseguiu detectar diretamente pela primeira vez a transição do Th-229m.

Eles usaram urânio-233 que, ao sofrer um decaimento radioativo alfa, gerou o tório-229, que foi então isolado na forma de um feixe de íons. Parece fácil, mas eles descreveram seu experimento como um tour de force, uma proeza fruto de muito esforço e habilidade - basta ver que ninguém mais havia conseguido em mais de 40 anos de tentativas.

O próximo passo será caracterizar as propriedades da transição nuclear do tório 229 de forma mais precisa, particularmente a meia-vida do isômero, e checar se a diferença de energia entre os dois estados bate com o que a teoria prevê.

Esses dados permitirão definir um laser que possa ser ajustado para a frequência de transição, o que é um pré-requisito para um controle óptico dessa transição, tornando então realidade o relógio nuclear.

Bibliografia:

Direct detection of the 229Th nuclear clock transition
Lars von der Wense, Benedict Seiferle, Mustapha Laatiaoui, Jürgen B. Neumayr, Hans-Jörg Maier, Hans-Friedrich Wirth, Christoph Mokry, Jörg Runke, Klaus Eberhardt, Christoph E. Düllmann, Norbert G. Trautmann, Peter G. Thirolf
Nature
Vol.: 533, 47-51
DOI: 10.1038/nature17669




Outras notícias sobre:

Mais Temas